ФГБОУ ВО «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Кафедра химии и защиты растений

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Ф.И. студента	
Факультет	
Курс	
Группа	
Преполаватель	

Ставрополь

2023

УДК 543.061 (062) ББК 24.1.я 7 Ф50

Рекомендовано к изданию методической комиссией факультета экологии и ландшафтной архитектуры Ставропольского ГАУ (протокол № 1 от 29 августа 2022 г.)

Рецензенты:

Белик Е.В., кандидат химических наук, доцент, ФГБОУ ВО СтГМУ **Денисова Е.В.,** кандидат биологических наук, доцент ФГАОУ ВО СКФУ

Авторский коллектив:

Волосова Е.В., кандидат биологических наук, доцент Шипуля А.Н., кандидат химических наук, доцент Пашкова Е.В., кандидат технических наук, доцент Безгина Ю.А., кандидат сельскохозяйственных наук, доцент Глазунова Н.Н., доктор сельскохозяйственных наук, профессор

Аналитическая химия и физико-химические методы исследования: лабораторный практикум / сост. Е.В. Волосова, А.Н. Шипуля, Е.В. Пашкова, Ю.А Безгина, Н.Н. Глазунова — Ставрополь, 2023

Изучение дисциплины «Аналитическая химия и физико-химические методы исследования» способствует формированию основ научного мировоззрения у современных студентов. Настоящий лабораторный практикум предназначена для оказания методической помощи в выполнении лабораторных работ по разделам программы курса «Аналитическая химия и физикохимические методы исследования».

Адресована студентам аграрных вузов, обучающихся по направлениям подготовки бакалавриата 35.03.07 Технология производства и переработки с.-х. продукции и 19.03.02 Продукты питания из растительного сырья очной и заочной форм обучения.

СОДЕРЖАНИЕ

ПРАВИЛА РА	АБОТЫ В ЛАБОРАТОРИИ	4
ПРАВИЛА О	БРАЩЕНИЯ С РЕАКТИВАМИ	7
	ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ, ПРИМЕНЯЕМЫЕ В ЕСКОЙ ХИМИИ	13
Окислительно	о-восстановительные реакции	13
Растворы.		16
Работа № 1	Приготовление раствора хлорида натрия заданной концентрации	19
Комплексные	соединения	20
Раздел I. Кач	ественный анализ	23
Работа № 2	Первая аналитическая группа катионов (K^+ , Na^+ , NH^{4+} , Mg^{2+} и др.)	23
Работа № 3	Вторая аналитическая группа катионов (Ca^{2+} , Ba^{2+} и др.)	26
Работа № 4	Третья аналитическая группа катионов $(Al^{3+}, Fe^{2+}, Fe^{3+}, Mn^{2+}, Zn^{2+}$ и др.)	29
Работа № 5	Четвертая аналитическая группа катионов $(Ag^+, Pb^{2+}, Hg_2^{2+}, Cu^{2+}, Hg^{2+})$	32
Работа № 6	Анализ анионов (SO_4^{2-} , PO_4^{3-} , CO_3^{2-} - 1-я группа; Cl^- , Br^- , I^- - 2-я группа; NO_3^- -3-я группа)	36
Вопросы для	подготовки к контрольной точке № 1	39
Раздел II. Ко	личественный анализ	41
Работа № 7	Определение содержания бария в анализируемом растворе методом осаждения	41
Работа № 8	Определение карбонатной жесткости воды методом кислотно-основного титрования	44
Работа № 9	Определение содержания хлорид-иона методом аргентометрического титрования	50
Работа №	Определение содержания иона кальция методом ком-	<i>5</i> 1
10	плексонометрического титрования титрования	54
Вопросы для	подготовки к контрольной точке № 2	57
Рекомендуем	ый перечень тем рефератов	59
	ый перечень вопросов итогового контроля по дисциплине	<i>6</i> 1
	кая химия и физико-химические методы исследования»	61
Приложения		64

ПРАВИЛА РАБОТЫ В ЛАБОРАТОРИИ

Для работы в лаборатории отводится рабочий стол на 1-2 студентов, который необходимо содержать в чистоте и. порядке, не загромождать посторонними для данной работы предметами.

- 1. Химические реактивы хранят в определенном для каждого вещества месте, в закрытых банках, склянках и других толстостенных сосудах. На каждой банке должна быть наклеена этикетка с точными названиями и формулой вещества, и подробной характеристикой (концентрация, плотность, чистота и т. п.). Запрещается хранить склянки с реактивами без пробок, без этикеток или в неисправной и непригодной таре.
- **2.** Ядовитые химические вещества хранят в отдельных запирающихся шкафчиках в строгом соответствии со специальными правилами и инструкциями по их хранению.
- **3.** При работе с реактивами следует соблюдать частоту и аккуратность, выполнять следующие **правила**:
- а) склянки и банки с жидкими и сухими реактивами держать всегда закрытыми; открывать их только при взятии реактивов и сразу же закрывать;
- б) закрывать склянки и банки нужно их же пробками или крышками, ни в коем случае нельзя закрывать их пробками или крышками, взятыми от других сосудов, так как при этом реактивы загрязняются и становятся непригодными для использования;
- в) если взято больше реактива, чем требуется, нельзя высыпать или выливать излишек обратно в сосуд, в котором он хранится, ибо таким образом можно загрязнить весь запас реактива;
- г) реактивы общего пользования не следует уносить на свой рабочий стол; надо соблюдать установленный порядок в расположении сосудов с реактивами, как общего, так и индивидуального пользования;
- д) остатки растворов солей серебра выливают в специальные банки, находящиеся в вытяжных шкафах;
- е) при взятии жидких реактивов склянку с жидкостью держат так, чтобы этикетка всегда оставалась сверху и жидкость не попадала на нее;
- ж) при взятии реактива пробку или крышку надо держать в руке или положить на стол, так чтобы входящая в горло склянки сторона пробки или внутренняя часть крышки не касалась стола;
- з) во всех случаях (за исключением тех, когда указана точная мера) надо брать самую минимальную дозу реактивов (например, раствора 1—2 капли);
- и) категорически запрещается пробовать реактивы на вкус, так как многие из них ядовиты;
- к) растворы, содержащие соли ртути, сливают в специальные банки; их нельзя выливать в раковину, так как соли ртути реагируют с чугуном труб, выделяя металлическую ртуть, собирающуюся в коленах коммуникации; при ремонтных работах она выливается и отравляет воздух парами ртути;
- л) нельзя хранить растворы щелочей и концентрированных кислот в стеклянной тонкостенной посуде: стекло разъедается и легко разбивается.
 - 5. Остатки крепких кислот выливают в специальные банки.
- **6.** Горячие предметы следует ставить только на асбестовую сетку, но не прямо па стол.

- 7. В лаборатории необходимо соблюдать тишину и дисциплину.
- **8.** В случае неудачи опыта следует продумать все сначала, посоветоваться с преподавателем и снова приступить к работе.
- **9.** Для записи хода лабораторных работ каждый должен иметь тетрадь, на обложке, которой нужно указать свою фамилию, факультет и номер группы.
- **10.** После окончания работы следует вымыть посуду и привести в порядок рабочее место. Только убедившись, что все убрано, горелки и электроприборы выключены можно уходить из лаборатории.

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РАБОТЕ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ

- **1.** В лаборатории обязательно должны быть огнетушитель, ящик с песком, одеяло и аптечка с медикаментами.
- **2.** При работе с ядовитыми, огне- и взрывоопасными веществами в лаборатории должно находиться не менее двух человек, чтобы при необходимости оказать помощь пострадавшему.
- **3.** Нельзя зажигать какие-либо газы или пары, не убедившись предварительно испытанием, что они не содержат примеси воздуха, так как смесь всякого горючего газа с воздухом в определенных объемах взрывается.
- **4.** При работе с горючими газами следует обращать особое внимание на такие газы, как водород, оксид углерода (II), сероводород, светильный газ, метан, этан, этилен, пропан, ацетилен и др.
- **5.** Категорически запрещается оставлять и хранить в газометре водород, ацетилен, этилен, метан и другие газы, образующие с воздухом гремучую смесь.
- **6.** Смесь ацетилена с кислородом нельзя воспламенять даже в открытых цилиндрах!
- **7.** При разбавлении концентрированных кислот, особенно серной, следует вливать кислоту в воду, а не наоборот.
- **8.** Если пролита низкокипящая жидкость, нужно немедленно погасить все газовые горелки и выключить электроплитки; пролитое вещество засыпать песком или собрать тряпками, затем песок и тряпки удалить; место, где была пролита жидкость, хорошо промыть водой.
- **9.** Ни в коем случае нельзя засасывать едкие и ядовитые жидкости в пипетку ртом во избежание ожога полости рта или отравления. Концентрированные щелочи, кислоты и другие едкие или ядовитые вещества набирают в пипетку с помощью резиновой груши, специальных автоматических пипеток или шприца.
- **10.** Встряхивать жидкости следует только в закрытой посуде; закрывать отверстие пробирки пальцем запрещается.
- 11. Взвешивать ядовитые вещества разрешается только под тягой. Все работы с концентрированными кислотами, щелочами и другими едкими и ядовитыми веществами производят в резиновых перчатках и защитных очках. При работе с токсичными и агрессивными веществами следует заблаговременно подготовить нейтрализующие и дегазирующие средства, которые размещают поблизости от места выполнения опытов.
- **12.** Вставляя стеклянную трубку в просверленную пробку, нужно смочить трубку и держать пальцами возможно ближе к вставляемому в пробку концу.
- 13. Горючие, легко воспламеняющиеся и низко кипящие жидкости (сероуглерод, эфир, ацетон, бензин и т.п.) следует хранить в толстостенных склянках или

других сосудах, помещенных в железный, выложенный асбестом и плотно закрывающийся ящик.

14. Литий, натрий и калий хранят под слоем керосина или масла, не содержащих влаги; на эти вещества не должна попасть вода или другие вещества, способные вступить с ними в химическую реакцию. Даже при соприкосновении с влажной кожей или одеждой калий и натрий воспламеняются и могут причинить ожоги. Все работы с ними необходимо производить в защитных очках и в перчатках на чистом, сухом столе. Выбрасывать обрезки натрия и калия в мусорные ящики, банки, ведра, корзины и т. п., а также в канализацию нельзя.

15. Ртуть хранят в толстостенных плотно закрывающихся сосудах. Переливание ртути и наполнение ею приборов производят только над ванной или кюветой, так чтобы не пролить ртуть на стол или на пол. Пролитую ртуть нужно немедленно собрать водоструйным вакуумным насосом с присоединенной к нему «ловушкой» (склянкой Дрекселя), заполненной водой; на второе отверстие ловушки надевают резиновый шланг, который подводят к ртути и засасывают ее насосом в ловушку. Небольшие капли ртути собирают пластинками из меди или белой жести. Приставшие к амальгамированной поверхности капельки ртути стряхивают в сосуд с водой и плотно закрывают резиновой пробкой. Недопустимо выливать ртуть в канализацию.

Категорически запрещается брать ртуть руками, а также отсасывать ее ртом.

При очистке от ртути после обычного промывания и тщательного ополаскивания водой посуду следует промыть 3%-ным раствором иодида калия. В барометрах и других приборах, где ртуть находится в открытых сосудах, во избежание испарения ртути необходимо заливать ее 1-2 миллиметровым слоем чистого глицерина или вазелинового масла.

16. Ввиду огнеопасности и ядовитости белого фосфора необходимо проявлять при работе осторожность и строго соблюдать правила обращения с ним. Хранить фосфор следует под водой в толстостенной банке коричневого стекла с притертой пробкой или с пробкой, залитой парафином, брать его только щипцами или пинцетом. Резать фосфор следует только в толстостенном сосуде (фарфоровая ступка, толстостенный кристаллизатор, плоскодонная фарфоровая чашка) и под водой, лучше при температуре25-30°С (не выше, так как при 44°С фосфор плавится). В холодной воде фосфор хрупок и при резании крошится. Отрезанные и вынутые из воды кусочки белого фосфора перед употреблением следует высущить, слегка отжимая кусочек фосфора между листами фильтровальной бумаги, сложенной в несколько слоев. При этом не следует сильно нажимать на фосфор, тереть его бумагой.

17. Опыты, которые сопровождаются вспышками, взрывами, разбрызгиванием веществ, проводят за подвижным экраном из стекла или пластика.

Кроме изложенных выше указаний по технике безопасности в описании соответствующих опытов указаны дополнительные меры предосторожности, которые необходимо соблюдать, подготавливая и выполняя опыты.

ПРАВИЛА ОБРАЩЕНИЯ С РЕАКТИВАМИ

Классификация реактивов

В количественном анализе следует применять более чистые реактивы.

В зависимости от количества примесей отечественные реактивы делят на химически чистые (х.ч.) - содержат не более 0,05% примесей, чистые для анализа (ч.д.а.) - не более 0,1% примесей, чистые (ч.) - 1,0 - 0,1%, очищенные (оч.) и «технические» (техн.). В последние десятилетия распространены реактивы особой чистоты (ос.ч.) и высшей очистки (в. оч.). Допустимое содержание примесей устанавливается ГОСТом и указывается на этикетке.

Не следует использовать неизвестные или сомнительные реактивы. При работе следует применять реактив именно той марки, которая указана в прописи. Одну и ту же серию определений, включая и градуировку, необходимо выполнять с реактивом одной и той же партии (номер партии указан на этикетке).

Правила работы с реактивами Твердые реактивы

- 1. Реактив берут из банки фарфоровым или стеклянным шпателем. Металлический шпатель применять не рекомендуется.
- 2. Просыпавшийся на стол реактив нельзя высыпать обратно в ту же банку во избежание загрязнений.
- 3. Взвешивать реактивы можно только в сухом стакане или на часовом стекле.
- 4. Отобранную порцию реактива следует пересыпать в чистый и высушенный стакан или бюкс с крышкой; хранить сухие вещества в бумаге ни в коем случае нельзя.

Жидкие реактивы

- 1. Растворы хранят в склянках, снабженных пробкой (лучше, стеклянной) и четкой этикеткой с указанием названия реактива, его формулы, марки, концентрации и даты приготовления. Применение корковых и резиновых пробок нежелательно. В крайнем случае, резиновые пробки перед употреблением надо прокипятить в воде.
- 2. Растворы веществ, разлагающихся на свету, нужно хранить в темных или желтых склянках.
- 3. Растворы аммиака и едких щелочей не рекомендуется хранить в стеклянной посуде, так как они при этом загрязняются веществами, перешедшими в раствор из стекла, соединениями натрия, кальция, кремниевой кислотой и др. Лучше хранить аммиак и щелочи в посуде из полиэтилена.

- 4. Нельзя класть пробки, закрывающие растворы, прямо на стол; отлитый из склянки реактив нельзя возвращать обратно в склянку и т. д.
- 5. Все растворы следует готовить на *дистиллированной воде*, а при определении микропримесей и при работе с особо чистыми веществами пользоваться только дважды перегнанной водой *бидистиллятом*.

ХИМИЧЕСКАЯ ПОСУДА, ПРИБОРЫ И ОБОРУДОВАНИЕ

При полумикроанализе используют массу и объем исследуемого вещества соответственно 0,05-0,5 г и 1-10 мл. Анализ таких малых количеств исследуемого вещества требует специального оборудования и посуды.

1. Пробирки бывают цилиндрические и конические. Большинство аналитических операций проводят в цилиндрических и конических пробирках. Конические пробирки называются также центрифужными, так как используются для центрифугирования. Они не всегда удобны в практике полумикроанализа, поскольку в них трудно растворять и промывать уплотненный на дне осадок, полученный после центрифугирования. Однако в таких пробирках легко обнаружить осадок и определить его характер: цвет, кристалличность. Цилиндрические и конические пробирки ставят в специальный штатив (рис 1).

Рис. 1. Штатив для пробирок

2. Капиллярная пипетка. Представляет собой стеклянную трубку, нижний конец которой оттянут в капилляр. На верхний конец трубки надет резиновый колпачок или резиновая трубка, плотно закрытая с одного конца стеклянным шариком или отрезком оплавленной стеклянной палочки. Длина пипетки 80-90 мм, емкость около 1 мл (рис. 2).

Рис. 2 Капиллярные пипетки

- **3.** Стеклянные палочки. Обычно их диаметр 3-5 мм, длина 7-10 см. Они должны быть хорошо оплавлены.
- 4. Промывалка. Представляет собой плоскодонную колбу из стекла. Колбу закрывают пробкой (лучше резиновой) с двумя отверстиями, в которые вставляют две стеклянные трубки. Одна из них - короткая, изогнутая под тупым углом, служит для вдувания в колбу воздуха, конец ее находится почти под самой пробкой. Другая трубка - длинная, доходит до самого дна колбы. Ее верхний конец загнут под углом 60-70°, нижний почти касается дна колбы. Верхний конец длинной трубки соединяется с помощью резиновой трубки длиной 4-5 см с короткой стеклянной трубкой, оттянутой на конце в капилляр. Этим достигается подвижность верхней части длинной трубки, что позволяет изменять направление струи жидкости, вытекающей из промывалки. Струя должна быть достаточно тонкой. Иногда в качестве промывалки используют полиэтиленовую банку, в крышке которой просверлено отверстие. Сквозь это отверстие пропускают стеклянную трубку до самого дна банки, а верхний конец загибают под углом 60-70 °C. Если надавить на стенку полиэтиленовой банки правой рукой, то вода начнет вытекать из верхнего конца трубки, оттянутого в капилляр. На наш взгляд, такой промывалкой пользоваться гораздо удобнее, чем промывалкой из стекла (рис. 3)/

Рис. 3. Промывалки

5. Капельная пластинка. Это пластиковая пластинка с несколькими углублениями. На ней удобно выполнять цветные реакции, сопровождающиеся характерной окраской осадка или раствора. На капельной пластинке можно проводить параллельно несколько реакций, очищать и мыть ее легче, чем пробирку (рис. 4).

Рис. 4 Капельная пластинка

6. Часовые стекла. Их диаметр 4 - 5 см; они должны быть как можно более выпуклыми. Из пары часовых стекол с пришлифованными краями делают газовую камеру, с помощью которой обнаруживают различные газы. На вогнутую поверхность верхнего стекла помещают влажную реактивную бумажку, а реакцию проводят на нижнем стекле (рис. 5).

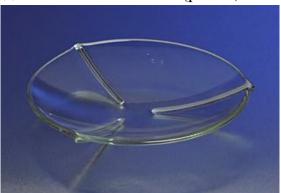


Рис. 5 Часовое стекло

7. Фарфоровые чашки. Они служат для выпаривания или нагревания раствора, их емкость - 6-10 мл (рис. 6).

Рис. б. Фарфоровая чашка для выпаривания раствора

8. Центрифуга. Предназначена для отделения осадка от раствора. Используется центробежная сила, развивающаяся при быстром движении ротора центрифуги (рис. 7).

Рис. 7. Центрифуга

9. Водяная баня. Служит для нагревания реакционной смеси в пробирке, которую погружают в кипящую водяную баню. Кипящую водяную баню используют также для упаривания жидкости до небольшого объема (рис.8).

Рис 8. Водяная баня

9. Песчаная баня. Для нагревания до 300°C реакционных сосудов и для упаривания растворов используются *песчаные бани* (рис. 9).

Рис 9. Песчаная баня

10. Лабораторные аналитические весы. Весы являются важнейшим прибором в химической лаборатории, так как ни один анализ не обходится без определения массы вещества и химической посуды, в которую помещают взвешиваемое вещество (рис. 10).

Рис. 10. Аналитические весы

11. Электрические печи. В лабораториях, в которых нет газа, или в тех случаях, когда требуется нагревание, а пользоваться горелками нельзя (например, при перегонке воспламеняющихся летучих жидкостей) применяют электрические плитки (рис. 11).

Рис. 11. Электрические печи

ОСНОВЫНЕ ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ, ПРИМЕНЯЕМЫЕ В АНАЛИТИЧЕСКОЙ ХИМИИ

<u>ПРАКТИЧЕСКАЯ РАБОТА № 1</u> ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Ключевые слова: окислитель, восстановитель, процесс окисления, процесс восстановления, окислительно-восстановительные реакции, метод электронного баланса.

1. Дайте определе	ния:	
Окислительно-во	сстановительные реакции –	
Окисление –		
Восстановление -	_	
Окислитель –		
Восстановитель	_	
2. Укажите окисли	итель и восстановитель в реакциях:	
окислитель	a) 2Al + 6 HCl → 2 AlCl ₃ + 3 H ₂ ; восстановитель	
	6) $2 H_2S + H_2SO_3 \rightarrow 3 S + 3 H_2O$	
окислитель	: восстановитель	

- 3. Методом электронного баланса подберите коэффициенты в схемах окислительно-восстановительных реакций:
- a) $NH_3 + O_2 \rightarrow NO + H_2O$

б)
$$H_2S + HNO_3 \rightarrow S + NO_2 + H_2O$$

B)
$$SO_2 + HNO_3 + H_2O \rightarrow H_2SO_4 + NO$$

$$\Gamma$$
) NaI + NaIO₃ + H₂SO₄ \rightarrow I₂ + Na₂SO₄ + H₂O

д)
$$Cr_2O_3 + Br_2 + NaOH \rightarrow Na_2CrO_4 + NaBr + H_2O$$

e)
$$HCl + KMnO_4 \rightarrow MnCl_2 + Cl_2 + KCl + H_2O$$

ж)
$$Na_2SO_3 + KMnO_4 + KOH \rightarrow Na_2SO_4 + K_2MnO_4 + H_2O$$

3)
$$KNO_3 \rightarrow KNO_2 + O_2$$

и)
$$HNO_3 \rightarrow NO_2 + O_2 + H_2$$

$$\kappa) \ KMnO_4 + Cr_2(SO_4)_3 + KOH \longrightarrow K_2Cr_2O_7 + K_2MnO_4 + K_2SO_4 + H_2O$$

$$\pi) \ KNO_2 + KMnO_4 + H_2SO_4 \longrightarrow KNO_3 + MnSO_4 + K_2SO_4 + H_2O$$

Зачтено _____ Подпись преподавателя____

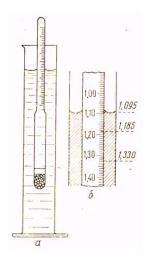
<u>ПРАКТИЧЕСКАЯ РАБОТА № 2</u> РАСТВОРЫ

Ключевые слова: истинные растворы, растворимость, концентрация раствора, массовая доля, молярность, нормальность, коэффициент растворимости, факторы, влияющее на растворимость.

1. Дайте определения:
Растворы –
Концентрация раствора –
Растворимость —
Коэффициент растворимости -
Гидраты –

Сольваты –			
Кристаллогидраты	_		

2. Заполните таблицу:


Способы выражения	Определение	Формула нахождения
концентрации	определение	т ормуна нахождения
Массовая доля растворённого вещества, ω , % Молярная концентрация, C_M , M	показывает сколько грамм растворённого вещества содержится в 100 г данного раствора.	$\omega = \frac{m(\textit{вещества})}{m(\textit{pacmвopa})} \cdot 100\%$
Нормальная концентрация, Сн, N	-	
Титр раствора, Т, г/мл	-	
Моляльная концентрация,,	-	

3. Определите моля Γ/cm^3).	рную концентрацию 20% раствора NaOH (ρ = 1,19
Дано:	Решение.
4. В 80 мл воды раств зы в полученном раст	орили 6 г сахарозы. Рассчитайте массовую долю глюковоре.
Дано:	Решение.
	лорида цинка, необходимого для приготовления 200 мл онцентрация хлорида цинка равна 0,5моль/л.
Дано:	Решение.
6. Определите нормал раствора содержится	вьную концентрацию хлорида алюминия, если в 250 мл 3,36 г соли.
Дано:	Решение.
	ость 4%-го раствора NaBr с плотностью 1,03 г/мл.
Дано:	Решение.

8. Определите молярную, нормальную концентрацию и титр 5 % раствора серной кислоты, плотность 1,1 г/см³ в объеме 1 л.

Дано:	Решение.

<u>ЛАБОРАТОРНАЯ РАБОТА № 1</u> ПРИГОТОВЛЕНИЕ РАСТВОРА ХЛОРИДА НАТРИЯ ЗАДАН-НОЙ КОНЦЕНТРАЦИИ

Выполнение работы. Рассчитайте, сколько граммов NaC1 и какой объем воды нужно взять для приготовления 250 мл раствора заданной массовой концентрации. На аналитических весах отвесьте (с точностью до 0,01 г) вычисленную массу хлорида натрия. Навеску NaC1 перенесите в мерную колбу (вместимостью 250 мл). Отмерьте цилиндром рассчитанный объем дистиллированной воды, перелейте ее колбу. Перемешайте. Полученный раствор перелейте в мерный цилиндр. Уровень жидкости должен быть ниже края цилиндра на 3-4 см. Осторожно опустите ареометр в раствор. Ареометр не должен касаться стенок цилиндра. Отсчет плотности по уровню жидкости производите сверху вниз. По таблице, предложенной преподавателем, найдите

и запишите массовую концентрацию раствора, отвечающую этой плотности. Результаты запишите в таблицу:

	заданная нцентрация	тность (ρ_1)	Рассчитанные компоненто		отность геримен- ьная (р ₂)	Экспериментальные концентрации		концен-	оситель-	ошибка,	σ%	
96	, 5а, Конц	Пло	m(NaCl)	m(H ₂ O)	Пле эксп талн	ω%	См	Сн	T	Отн	ная	

Зачтено _____ Подпись преподавателя____

<u>ПРАКТИЧЕСКАЯ РАБОТА № 3</u> КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Ключевые слова: комплекс, координационное число, лиганды, внутренняя сфера, внешняя сфера, комплексообразователь.

1. Дайте определения:			
Комплексные соединен	иия —		
Комплексные	соединения	состоят	
K_3 [Fe(CN) ₆]		[Fe (CN) ₆] ³⁻	
Координационное ——————————————————————————————————	число	_	ЭТО
2. Определите координ ний:	ационное число у след	ующих комплексных	х соедине-
$Na_3[Co(NO_2)_6]$	к.ч. =		
$[Ag(NH_3)_2]Cl$	к.ч. =		

$K_2[Cu(OH)_4]$	к.ч. =
$Fe_3[Fe(CN)_6]_2$	к.ч. =
$K_2[Zn(OH)_4]$	к.ч. =

3. Определите заряд комплексообразователя, комплексного иона и иона внешней сферы у следующих комплексных соединений:

$$Na_3$$
 [Co $(NO_2)_6$]

$$K_2$$
 [Cu (OH)₄]

$$Fe_3 [Fe (CN)_6]_2$$

$$[Cu (NH_3)_4] (OH)_2$$

4. Заполните таблицу. Определите ионы внешней сферы, ионы внутренней сферы, комплексообразователь и лиганды для следующих комплексных соединений: $K_2[PtCl_6]$; $[Co(NH_3)_5Cl]Cl_2$; $K[PtNH_3Cl_5]$; $Na_2[Cu(OH)_4]$; $[Cu(NH_3)_4]SO_4$; $[Ni(NH_3)_5Cl]I$:

Ионы внешней сферы	Ионы внутренней сферы	Комплексообразователь	Лиганды

5. Дайте названия следующ	цим комплексным соединениям:
$[Co(NH_3)_4CO_3]Cl - \underline{\hspace{1cm}}$	
[Cu(NH ₃) ₄]SO ₄ –	
[Ni(NH ₃) ₅ Cl]I –	
[Cr(H ₂ O) ₆]Cl ₃ –	
$K[Co(NH_3)_2(NO_2)_4] - $	
Зачтено	Подпись преподавателя

<u>ЛАБОРАТОРНАЯ РАБОТА № 2</u> ПЕРВАЯ АНАЛИТИЧЕСКАЯ ГРУППА КАТИОНОВ

 $(K^+, Na^+, NH_4^+, Mg^{2+}$ и др.)

Цель: Провести качественный анализ катионов 1-ой аналитической группы. **Задачи:**

- 1. Изучить частные качественные реакции на катионы 1-ой аналитической группы.
- 2. Исследовать действие группового реагента.

Последовательность хода анализа смеси катионов первой группы с ее обоснованием и указанием химических реакций.

1. Ход анализа начинают с обнаружения иона аммония дробным методом реактивом Несслера (тетраиодидомеркуратом (II) калия), т.к. эта реакция является специфической, ей не мешают другие ионы. Кроме того ион NH_4^+ , будет мешать обнаружению K+ и Na+ и о его присутствии необходимо знать заранее. Реактив Несслера — смесь $K2[HgI_4]_4$ и KOH, выделяет из раствора солей аммония _______ осадок иодида оксодимеркураммония.

$$NH_4Cl + 2K_2[Hg\ I_4] + 4KOH = [NH_2Hg_2O] \downarrow + 7KI + KCl + 3\ H_2O$$
 или в ионной форме:

$$NH_4^+ + 2[HgI_4]^{2-} + 4OH^- \rightarrow [NH_2 Hg_2 O] \downarrow + 7I^- + 3H_2 O$$

2. Обнаружение иона магния.

Обнаружению Mg^{2+} другие катионы первой группы не мешают, и он тоже обнаруживается дробным методом.

Гидрофосфат натрия Na_2HPO_4 в присутствии NH_4OH и NH_4Cl с ионом Mg^{2+} образует _____ кристаллический осадок фосфата магния аммония.

$$MgSO_4 + Na_2HPO_4 + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + Na_2SO_4 + H_2O$$
 или в ионной форме:
$$Mg^{2^+} + HPO_4^{2^-} + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + H_2O$$

3. Удаление иона аммония (не выполняется).

Ион аммония необходимо удалить из исследуемого раствора, т.к. он мешает обнаружению ионов калия и натрия.

Удаление $\mathrm{NH_4}^+$ основано на термическом разложении солей аммония с образованием газообразных продуктов.

$$NH_4Cl \xrightarrow{t} NH_3\uparrow + HCl\uparrow$$

4. Обнаружение иона калия.

В центрифугате, не содержащего NH_4^+ , гексанитрокобальтат (III) натрия $Na_3[Co(NO_2)_6]$ при взаимодействии с ионом калия в <u>нейтральной</u> или <u>уксус-</u>

нокислой среде образует осадок	_ цвета гексанитро-
кобальтат (III) натрия - калия - K_2 Na[Co(NO ₂) ₆].	•
$2KC1 + Na_3[Co(NO_2)_6] \rightarrow K_2Na[Co(NO_2)_6] \downarrow +$	- 2NaCl
или в ионной форме:	
$2K^{+} + Na^{+} + [Co(NO_{2})_{6}]^{3-} \rightarrow K_{2}Na[Co(NO_{2})_{6}]^{3-}$	2)6]↓
5. Удаление иона магния.	-/ ° _ '
Если в растворе был обнаружен магний, то его необход	имо удалить, т.к. он
мешает обнаружению натрия.	•
Удаление ${\rm Mg}^{2+}$ основано на трудной растворимости ${\rm Mg}({\rm C})$	OH) ₂ .
При добавлении к центрифугату раствора КОН (но не N	_
дается в виде аморфного осад	. •
ния.	, , , ,
$MgCl_2 + 2KOH \rightarrow Mg(OH)_2 \downarrow + 2KCl$	
или в ионной форме:	
$Mg^{2+} + 2OH^{-} \rightarrow Mg(OH)_{2} \downarrow$	
6. Обнаружение иона натрия в центрифугате, который	не солержит $\mathrm{NH_4}^+$ и
Mg^{2+} .	
Гексагидроксостибиат (V) калия K[Sb(OH) ₆] осаждает и	з нейтрального рас-
твора, содержащего Na ⁺ , крис	
гексагидроксостибиата (V) натрия Na[Sb(OH) ₆].	
$NaCl + K[Sb(OH)_6] \rightarrow Na[Sb(OH)_6] \downarrow + K$	Cl
или в ионной форме:	
$Na^+ + [Sb(OH)_6]^- \rightarrow Na [Sb(OH)_6] \downarrow$	
Вопросы, изучаемые при подготовке к за	анятию:
1. Какие катионы относятся к первой аналитической г	
2. Почему катион магния относится к первой группе?	
3. В какой последовательности выполняют операции и	в ходе анализа сме-
си катионов первой группы? Дать пояснение.	
4. Качественная реакция на катион аммония.	
5. Качественная реакция на катион магния.	
6. На чем основано удаление катиона аммония из анал	изируемого раство-
ра? 7. Качественная реакция на катион калия, условия про	орепеция р еакция
8. На чем основано удаление катиона магния из раство	
9. Качественная реакция на катион натрия, условия пр	
10. Биологическое значение катионов 1-ой группы.	, 02 07 0111111 P 0111111111

Зачтено	Подпись преподавателя	

<u>ЛАБОРАТОНАЯ РАБОТА № 3</u> ВТОРАЯ АНАЛИТИЧЕСКАЯ ГРУППА КАТИОНОВ (Ca²⁺, Ba²⁺ и др.)

Цель: Провести качественный анализ катионов 2-ой аналитической группы. **Задачи:**

- 1. Изучить частные качественные реакции на катионы 2-ой аналитической группы.
- 2. Исследовать действие группового реагента.
- **1.** Отделение катионов второй группы от первой в виде труднорастворимых в воде карбонатов при помощи группового реактива $(NH_4)_2CO_3$, карбонаты катионов первой группы хорошо растворимы и при этом остаются в растворе.

$$CaCl_2 + (NH_4)_2CO_3 \rightarrow CaCO_3 \downarrow +2NH_4Cl$$
 или в ионной форме: $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \downarrow$

$$BaCl_2 + (NH_4)_2CO_3 \rightarrow BaCO_3 \downarrow + 2NH_4Cl$$
 или в ионной форме: $Ba^{2+} + CO_3^{2-} \rightarrow BaCO_3 \downarrow$

Основное требование при отделении ионов – это полнота отделения.

2. <u>Растворение осадка карбоната кальция (мел)</u> в уксусной кислоте:

$$CaCO_3 + CH_3COOH \rightarrow Ca(CH_3COO)_2 + H_2O + CO_2 \uparrow$$

3. Обнаружение иона бария.

Поскольку барий мешает обнаружению кальция реакцией с оксалатом аммония $(NH_4)_2C_2O_4$, т.к. образует с этим реактивом _____ осадок, то необходимо узнать, присутствует ли он в растворе. Хромат калия K_2CrO_4 и дихромат (бихромат) калия $K_2Cr_2O_7$ образуют с катионом бария ______ кристаллический осадок хромата бария $BaCrO_4$:

$$2BaCl_2 + K_2Cr_2O_7 + H_2O \rightarrow 2BaCrO_4 \downarrow + 2KCl + 2HCl$$
 или в ионной форме: $2Ba^{2+} + Cr_2O_7^{2-} + H_2O \rightarrow BaCrO_4 \downarrow + 2H^+$

4.	Отделение иона	бария	перед	обнар	ужением	кальция.
----	----------------	-------	-------	-------	---------	----------

Осуществляется добавлением к анализируемому раствору хромата или дихромата калия. Ba^{2+} осаждается в виде труднорастворимого хромата (реакции указаны выше), а хромат и дихромат кальция хорошо растворимы и ион кальция остается в растворе.

5.	Обнару	жение	иона	кальция	В	раство	pe	(центри	ругате),	который	і не
co	держит к	атион (бария.								
Ок	салат	аммон	ия	$(NH_4)_2C_2O_2$	4	c I	кати	ЮНОМ	кальция	и обра	зует
			кт	оисталличе	ск	ий осал	ок (оксалата	кальшия	CaC_2O_4 .	

$$CaCl_2 + (NH_4)_2C_2O_4 \rightarrow CaC_2O_4 \downarrow + 2NH_4Cl$$
 или в ионной форме: $Ca^{2+} + C_2O_4^{2-} \rightarrow CaC_2O_4 \downarrow$

Вопросы, изучаемые при подготовке к занятию:

- 1. Какие катионы относятся ко второй аналитической группе?
- 2. В какой последовательности выполняют операции в ходе анализа смеси катионов второй и первой группы? Дать пояснение.
- 3. Что является групповым реактивом на катионы второй группы, почему его действие ведут в присутствии NH_4OH , NH_4Cl , при нагревании раствора до $50\div70^{0}C$.
- 4. Качественная реакция на катион бария. Почему при взаимодействии катиона бария с дихромат-ионом образуется осадок хромата бария?
- 5. Качественная реакция на катион кальция.

6. Биологическое значение катионов 2-ой группы.	

ачтено	Подпись препод	авателя	

<u>ЛАБОРАТОРНАЯ РАБОТА № 4</u> ТРЕТЬЯ АНАЛИТИЧЕСКАЯ ГРУППА КАТИОНОВ

 $(Al^{3+}, Fe^{2+}, Fe^{3+}, Mn^{2+}, Zn^{2+}$ и др.)

Цель: Провести качественный анализ катионов 3-ой аналитической группы. **Задачи:**

- 1. Изучить частные качественные реакции на катионы 3-ой аналитической группы.
- 2. Исследовать действие группового реагента.

	1.	Обнаружение иона железа	(II).
--	----	-------------------------	-------

Катионы Fe^{2+} , Fe^{3+} , Mn^{2+} имеют специфические реакции, поэтому их обнаруживают в начале хода анализа в отдельных порциях задачи. Реактивом на Fe^{2+} является гексацианоферрат (III) калия $K_3[Fe(CN)_6]$, с Fe^{2+} образует _______ осадок турнбулевой сини (гексацианоферрат (III) железа (II)):

$$3\text{FeSO}_4 + 2\text{K}_3[\text{Fe}(\text{CN})_6] \to \text{Fe}_3[\text{Fe}(\text{CN})_6]_2 \downarrow + 3\text{K}_2\text{SO}_4$$
 или в ионной форме: $3\text{Fe}^{2^+} + 2[\text{Fe}(\text{CN})_6]^{3^-} \to \text{Fe}_3[\text{Fe}(\text{CN})_6]_2 \downarrow$

2. Обнаружение иона железа (III).

Реактивом на Fe^{3+} является гексацианоферрат (II) калия $K_4[Fe(CN)_6]$, с Fe^{3+} он образует ______ осадок берлинской лазури (гексацианоферрат (II) железа (III)):

4FeCl₃ + 3K₄[Fe(CN)₆] → Fe₄[Fe(CN)₆]₃↓ + 12KCl или в ионной форме:
$$4Fe^{3+} + 3 [Fe(CN)_6]^{4-} \rightarrow Fe_4[Fe(CN)_6]_3↓$$

3. Обнаружение иона алюминия.

Сначала действием HCl разрушаем комплексный ион и получаем ион Al³⁺

 $Na[Al(H_2O)_2(OH)_4] + 4HCl \rightarrow AlCl_3 + NaCl + 6H_2O$

 NH_4OH в присутствии NH_4Cl с Al^{3+} образует ______ хлопьевидный осадок $Al(OH)_3$. Гидроксид цинка $Zn(OH)_2$ в осадок не выпадает, т.к. он растворяется в избытке NH_4OH и солях аммония.

$$AlCl_3 + 3NH_4OH \rightarrow Al(OH)_3 \downarrow + 3NH_4Cl$$
 или в ионной форме:
$$Al^{3+} + 3NH_4OH \rightarrow Al(OH)_3 \downarrow + 3NH_4^+$$

4. Обнаружение иона цинка. Действием HCl разрушаем комплексный ион $[Zn(OH)_4]^{2-}$ и получаем ион Zn^{2+} . Гексацианоферрат (II) калия $K_4[Fe(CN)_6]$ с ионом Zn^{2+} образует
\mathbf{Z}_{11} . Тексацианоферрат (11) калия \mathbf{K}_{4} [ге(Сту ₆] с ионом \mathbf{Z}_{11} ооразует кристаллический осадок двойной соли
$K_2Zn_3[Fe(CN)_6]_2$ кристаллический осадок двоиной соли
$3\operatorname{ZnCl}_2 + 2\operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \to \operatorname{K}_2\operatorname{Zn}_3[\operatorname{Fe}(\operatorname{CN})_6]_2 \downarrow + 6\operatorname{KCl}$
Вопросы, изучаемые при подготовке к занятию: 1. Какие катионы относятся к третьей аналитической группе, их общая ха-
рактеристика, биологическое значение?
2. Действие группового реактива на третью группу. С какой целью добавляют NH ₄ OH, NH ₄ Cl, нагревают раствор?
3. Почему при осаждении катионов третьей группы сульфидом аммония катион алюминия осаждается в виде гидроксида алюминия?
4. На чем основано отделение катионов алюминия и цинка от катионов железа и марганца?
5. Почему катионы железа и марганца можно обнаружить в начале хода анализа перед отделением третьей группы? Качественные реакции на данные катионы.
6. На каком свойстве гидроксида алюминия основано обнаружение Al^{3+} в присутствии Zn^{2+} .
7. Последовательность хода анализа смеси катионов третьей группы с отделением от второй и первой групп, ее обоснование.

Зачтено	Подпись преподавателя

<u>ЛАБОРАТОРНАЯ РАБОТА № 5</u> ЧЕТВЕРТАЯ АНАЛИТИЧЕСКАЯ ГРУППА КАТИОНОВ $(Ag^+, Pb^{2+}, Hg_2^{2+}, Cu^{2+}, Hg^{2+})$

Цель: Провести качественный анализ катионов 4-ой аналитической группы. **Залачи:**

- 1. Изучить частные качественные реакции на катионы 4-ой аналитической группы.
- 2. Исследовать действие группового реагента.

У сульфидов катионов 4-й группы значения произведения растворимости (ПР) настолько малы, что превышаются не только при действии сульфидом аммония, но и при пропускании сероводорода, дающего гораздо меньше сульфид — ионов. Превышаются значения ПР сульфидов 4-й группы даже в присутствии сильных кислот, подавляющих диссоциацию сероводородной кислоты.

<u>Групповым реактивом 4-й группы служит сероводород в кислой среде</u> (HCl). Катионы 3-й группы при этом не осаждаются.

Катионы 4-й группы по растворимости хлоридов делятся на две подгруппы. В подгруппу серебра входят Ag^+ , Hg_2^{2+} и Pb^{2+} , дающие с хлороводородной кислотой мало растворимые в воде хлориды. К подгруппе меди относятся Cu^{2+} , Hg^{2+} , хлориды которых растворимы в воде, цвета. $AgNO_3 + HCl \rightarrow AgCl \downarrow + HNO_3$ $Pb(NO_3)_2 + 2HCl \rightarrow PbCl_2 \downarrow + 2HNO_3$

КАЧЕСТВЕННЫЕ РЕАКЦИИ КАТИОНОВ 4 ГРУППЫ Реакции катиона \mathbf{Ag}^+

В водных растворах Ад⁺ бесцветен.

1. **Едкие щелочи** образуют с ионом Ag^+ _____ осадок Ag_2O , который образуется вследствие распада получающегося первоначально неустойчивого гидроксида серебра:

$$AgNO_3 + NaOH \rightarrow AgOH \downarrow + NaNO_3$$

 $2AgOH \rightarrow Ag_2O \downarrow + H_2O$

Осадок растворим в NH₄OH с образованием комплексного соединения гидроксид диамминсеребра:

$$Ag_2O + 4NH_4OH \rightarrow 2[Ag(NH_3)_2]OH + 3H_2O$$

Реакцию проводят в присутствии NH₄Cl.

2.	Хромат			образует		ИОНОМ	серебра
				садок Ag ₂ CrO			
		2AgNO ₃	$+ K_2CrO_4 -$	\rightarrow Ag ₂ CrO ₄ \downarrow +	2KN0	O_3	
3. l	Растворы хл	оридов, бр	омидов, ио	дидов (ионы	Cl ⁻ , B	sr ⁻ , I ⁻) образ	вуют с Ад ⁺
oca,	дки:		AgCl↓	,			. AgBr↓ и
AgI	[↓:						
		AgN	$O_3 + NaCl -$	\rightarrow NaNO ₃ + A ₉	gCl↓		
		AgN	$O_3 + NaBr -$	\rightarrow NaNO ₃ + A ₈	gBr↓		
		Agl	$NO_3 + NaI -$	\rightarrow NaNO ₃ + A ₈	gΙ↓		
		C		атиона P b ²⁺			
Вв	одных раство	pax Pb ²⁺ δε	есцветен.	_			
1. I	Едкие щелоч	чи и NH ₄ ()Н образую	от с Pb ²⁺			осадок
гид	роксида свиг	нца (II) Рь	(ОН) ₂ , кото	рый раствори	им в и	избытке ще	елочи, т.к.
обл	адает амфоте	ерными сво	ойствами:				
		$Pb(NO_3)_2$	+ 2NaOH -	\rightarrow 2NaNO ₃ + P	b(OH	$)_2 \downarrow$	
			$Pb(OH)_2$	\leftrightarrow H ₂ PbO ₂			
		Pb(OH	$)_2 + 2NaOH$	\rightarrow Na ₂ PbO ₂ +	- 2H ₂ C)	
	~			мбит натрия	a o 2-x		D1 2+
				тьфаты (ион	SO_4^2)	осаждают	Рь в ви-
де _							
		Pb(NO ₂	$_{3})_{2}+\mathrm{H}_{2}\mathrm{SO}_{4}-$	\rightarrow PbSO ₄ \downarrow + 2	2HNO	3	
3. X	Кромат кали	я K ₂ CrO ₄	и бихромат	калия К2Сг2	О7 обр	разуют с РІ	о ²⁺ хромат
сви	нца – осадок			_ цвета:			
		$Pb(NO_3)$	$_2 + K_2CrO_4 -$	\rightarrow PbCrO ₄ \downarrow +	2KNO	O_3	
	2Pb(NO	$O_3)_2 + K_2 Cr_2$	$_{2}O_{7}+H_{2}O-$	→ 2PbCrO ₄ ↓ +	2KN0	$O_3 + 2HNO$	3
4. I	Іодид калия	KI c Pb ²⁺ c	образует			осадок	PbI ₂ :
				$\rightarrow PbI_2 \downarrow + 2K$			
			Реакции к	атиона Cu ²⁺			
Pac	творы солей	меди		или		ЦВ	вета.
1. E	Едкие щелоч	и образую	т с Cu ²⁺			осадон	$Cu(OH)_2$
чер	неющий при	нагревани	и вследстви	е превращени	ия в С	uO:	
		CuSO ₄ -	+ 2NaOH →	$-Cu(OH)_2 \downarrow +$	Na ₂ SC	O_4	
			$Cu(OH)_2$	\rightarrow CuO + H ₂ O			

2. NH₄OH с Cu ²⁺ реагирует следующим образом:
а) при недостатке NH ₄ OH (1-2 капли) образуется осадок основной соли
цвета
$2\text{CuSO}_4 + 2\text{NH}_4\text{OH} \rightarrow (\text{CuOH})_2\text{SO}_4 \downarrow + (\text{NH}_4)_2\text{SO}_4$
б) избыток NH ₄ OH (8-10 капель) переводит основной сульфат меди в ком-
плексную соль – сульфат тетрааммин-меди (II), сообщающий раствору
цвет:
$(CuOH)_2SO_4 + (NH_4)_2SO_4 + 6NH_4OH \rightarrow 2[Cu(NH_3)_4]SO_4 + 8H_2O$
Вопросы, изучаемые при подготовке к занятию:
1. Какие катионы относятся к 4-ой аналитической группе? Чем они отлича-
ются от катионов 3-ей группы?
2. Что является групповым реактивом (реагентом) на катионы 4-ой группы?
В виде каких соединений осаждаются данные катионы?
3. По растворимости каких соединений 4-ая группа делится на две подгруп-
пы? Какие катионы относятся к подгруппе серебра, а какие – к подгруппе
меди?
4. Какие катионы 4-ой группы выпадают в осадок при действии HCl?
5. Какова растворимость в воде гидроксидов, карбонатов, фосфатов, хрома-
тов катионов 4-ой группы, напишите молекулярные формулы данных соеди-
нений? 6. Какая комплексная соль образуется при растворении AgCl в NH ₄ OH? На-
пишите уравнение реакции.
7. Какая комплексная соль образуется при взаимодействии Cu ²⁺ с избытком
NH ₄ OH? Напишите уравнение реакции.
8. Биологическое значение катионов 4-ой группы.

Зачтено	Подпись преподавателя	

ЛАБОРАТОРНАЯ РАБОТА № 6

АНАЛИЗ АНИОНОВ

 $(SO_4^{2-}, PO_4^{3-}, CO_3^{2-} - 1-я группа; Ct, Br, I - 2-я группа; NO_2^{-}, NO_3^{-} - 3-я группа)$

Цель: Провести качественный анализ анионов.

Задачи:

- 1. Познакомиться с различными классификациями анионов.
- 2. Изучить частные качественные реакции на анионы разных аналитических групп.

Анализ анионов имеет свои особенности. В отличие от катионов анионы обычно не мешают обнаружению друг друга. Поэтому многие из них обнаруживают дробным методом в отдельных порциях исследуемого раствора.

Последовательность хода анализа смеси анионов 1-3-й групп с указанием химических реакций.

1. Обнаружение сульфат-иона.

Хлорид бария BaCl₂ в нейтральной или слабощелочной среде осаждает анионы 1-й группы в виде труднорастворимых солей бария:

$$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl$$
 или в ионной форме: $SO_4^{2-} + Ba^{2+} \rightarrow BaSO_4 \downarrow$

Na₂CO₃ + BaCl₂ → BaCO₃↓ + 2NaCl
или в ионной форме:
$$CO_3^{2-} + Ba^{2+} \rightarrow BaCO_3$$
↓

Na₂HPO₄ + BaCl₂ → BaHPO₄↓ + 2NaCl
или в ионной форме:
$$HPO_4^{2-} + Ba^{2+} \rightarrow BaHPO_4$$
↓

В присутствии щелочей или NH_4OH , переводящих ион HPO_4^{2-} в PO_4^{3-} , получается средняя соль:

$$2Na_2HPO_4 + 2NH_4OH + 3BaCl_2 \rightarrow Ba_3(PO_4)_2 \downarrow + 4NaCl + 2NH_4Cl + 2H_2O$$

Осадки $BaCO_3$, $BaHPO_4$, $Ba_3(PO_4)_2$ растворяются в HCl, а осадок $BaSO_4$ не растворяется. На этом основано обнаружение SO_4^{2-} в присутствии CO_3^{2-} , PO_4^{3-}

2. Обнаружение карбонат-иона.

Кислоты (HCl, H_2SO_4) разлагают карбонаты с выделением оксида углерода (IV):

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2\uparrow$$

Магнезиальная смесь (MgCl $_2$ + NH $_4$ OH + NH $_4$ Cl) выделяе	
рофосфата натрия и фосфата натрия	кристалличе-
ский осадок фосфата магния – аммония:	
$Na_2HPO_4 + MgCl_2 + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + 2N_4$	$aCl + H_2O$
или в ионной форме:	
$HPO_4^{2-} + Mg^{2+} + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + I$	H_2O
4. Обнаружение хлорид-иона.	
Нитрат серебра образует с анионами 2-й группы галоген	иды серебра, кото-
рые не растворимы в воде и разбавленной азотной кислоте	···
$NaCl + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$	
или в ионной форме:	
$Cl^- + Ag^+ \rightarrow AgCl \downarrow$	
$NaBr + AgNO_3 \rightarrow AgBr \downarrow + NaNO_3$	
или в ионной форме:	
$\mathrm{Br}^{\text{-}} + \mathrm{Ag}^{\text{+}} \longrightarrow \mathrm{AgBr} \downarrow$	
$NaI + AgNO_3 \rightarrow AgI \downarrow + NaNO_3$	
или в ионной форме:	
$\mathrm{I}^{\scriptscriptstyle{-}} + \mathrm{Ag}^{\scriptscriptstyle{+}} o \mathrm{AgI} \! \downarrow$	
5. Обнаружение нитрат-иона.	
\square Дифениламин (C ₆ H ₅) ₂ NH окисляется ионом NO ₃ до пр	олукта, имеющего
окраску.	odjilia, imielomere
Okpacky.	
D.	
Вопросы, изучаемые при подготовке к зап	
1. Классификация анионов на три аналитических группы. реактивы.	у казать групповые
2. На чем основано обнаружение SO_4^{2-} в присутствии CO_3	²⁻ и PO ₄ ³⁻ ?
3. Какой аналитической реакцией обнаруживают CO_3^{2-} в х	
4. Какой аналитической реакцией обнаруживают PO_4^{3} в х	оде анализа?
5. На чем основано обнаружение Cl в присутствии Br и I	
6. На чем основано обнаружение І и Вг хлорной водой присутствии?	при совместном их
7. Какой аналитической реакцией обнаруживают NO_3 в х	2

Зачтено	Подпись преподавателя	
		

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К КОНТРОЛЬНЫМ ТОЧКАМ ПО ДИСЦИПЛИНЕ

«АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ»

I. Раздел «Качественный анализ»

- 1. Задача качественного анализа. Аналитические реакции. Аналитический сигнал. Сущность качественного анализа. Привести примеры.
- 2. На чем основано деление четвертой аналитической группы на две подгруппы. Привести реакции осаждения серебра.
- 3. Аналитические реакции, проводимые «сухим» и «мокрым» путем, привести пример. Что обнаруживают аналитические реакции при анализе раствора.
- 4. Качественная реакция на катион аммония с реактивом Несслера.
- 5. Специфические аналитические реакции, привести примеры.
- 6. Качественная реакция на катион магния с гидрофосфатом натрия в присутствии гидроксида аммония.
- 7. Селективные аналитические реакции, привести пример.
- 8. Качественная реакция на катион калия.
- 9. Аналитические реакции обнаружения ионов и аналитические реакции отделения ионов, привести примеры.
- 10. Качественная реакция на катион кальция.
- 11. Условия проведения аналитической реакции на примере реакции катиона натрия.
- 12. Качественная реакция на катион бария с бихроматом калия.
- 13. Дробный ход анализа. Привести примеры реакций на катионы железа (II), железа (III), марганца (II).
- 14. Качественная реакция на катион свинца (II) с иодидом калия.
- 15. Систематический ход анализа. Составить последовательность действий в ходе анализа смеси катионов первой группы и обосновать ее.
- 16. Качественная реакция на катион железа (III).

- 17. Групповой реагент, на чем основано его действие? Привести пример отделения третьей аналитической группы катионов от второй.
- 18. Качественная реакция на катион железа (II).
- 19. Основное требование к реакциям отделения ионов (на примере осаждения второй группы катионов), объясните условия осаждения.
- 20. Качественная реакция на катион марганца с гипохлоритом натрия.
- 21. Классификация катионов на четыре аналитические группы. Указать групповые реагенты.
- 22. Качественная реакция на катион меди (II) с гидроксидом аммония.
- 23. Классификация анионов на три аналитические группы, указать групповые реагенты.
- 24. Качественная реакция на катион ртути (II) с медью.
- 25. Почему при обнаружении катиона бария бихроматом калия получается осадок хромата бария? Составить уравнения реакций.
- 26. На чем основано отделение катионов железа (II), железа (III), марганца (II) от алюминия и цинка. Привести реакции.
- 27. Почему при осаждении третьей аналитической группы сульфидом аммония в присутствии гидроксида аммония, алюминий осаждается в виде гидроксида, а не в виде сульфида? Привести реакции осаждения третьей аналитической группы катионов.
- 28. Общая характеристика катионов четвертой аналитической группы, их биологическая роль.
- 29. Почему для осаждения катионов четвертой аналитической группы используем сероводородную кислоту, а не сульфид аммония? Привести реакции осаждения катионов четвертой аналитической группы.
- 30. Общая характеристика катионов третьей аналитической группы, их биологическая роль.

<u>ЛАБОРАТОРНАЯ РАБОТА № 7</u> ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ БАРИЯ В АНАЛИЗИРУЕМОМ РАСТВОРЕ МЕТОДОМ ОСАЖДЕНИЯ

Цель: Определить содержание бария в анализируемом растворе методом осаждения.

Задачи:

- 1. Ознакомление с методами гравиметрического анализа.
- 2. Приобретение навыков взвешивания на аналитических весах.
- 3. Приобретение навыков расчетов результатов в гравиметрическом анализе.

№ n/n	Наименование операции	Выполнение операции		
1	Осаждение Ba ²⁺	1.1. Приготовить р-р осадителя: в коническую колбу отмерить 5 мл 2н. раствора H_2SO_4 и добавить дистиллированной воды до 30 мл. 1.2. Нагреть на песчаной бане анализируемый раствор и раствор осадителя почти до кипения, но не кипятить!!! 1.3. Прилить горячий раствор осадителя каплями по палочке при непрерывном перемешивании к анализируемому раствору. 1.4. Дать отстояться осадку и проверить полноту осаждения: добавить по стенке стакана 1 каплю осадителя. 1.5. Поставить стакан с осадком на песчаную баню (теплую) на 20 мин. для созревания осадка. Затем снять стакан и медленно охладить.		
2	Промывание и фильтрование осадка	2.1. Приготовить фильтровальную установку. 2.2. Осторожно слить на фильтр, отстоявшийся прозрачный раствор над осадком (декантация). 2.3. Нагреть приблизительно до 60° промывную жидкость, состав которой 5-10 мл 2н. Н ₂ SO ₄ на 500 мл воды. 2.4. Промыть осадок от хлорид-ионов 2-3 раза горячей промывной жидкостью порциями 15-20 мл методом декантации. Промывать осадок до отрицательной реакции на хлорид-ион.		

5	Взвешивание	Взвесить тигель с осадком на аналитических весах.
осадка	до белого цвета (в течении 20-30 мин) до постоянной массы. 4.4. Охладить тигель в эксикаторе (5-10 мин.) до 25°С.	
4	Прокаливание	 4.1. Взвесить пустой тигель на аналитических весах с точностью 0,0001г. 4.2. Поместить фильтр с осадком в тигель. 4.3. Прокалить тигель в муфельной печи при t⁰ 850°C
3	Высушивание осадка	Для того, чтобы фильтр легко отделился от воронки, подсушить воронку с осадком в сушильном шкафу при t^0 105-110°C 5-7 мин.
		2.5. Количественно перенести осадок на фильтр: к промытому осадку добавить 5-10 мл дистиллированной воды, перемешать и взмученный осадок перенести на фильтр по палочке, стенки стакана смыть водой и протереть палочкой с резиновым наконечником.

<u>Расчет</u>

1. Определяем массу прокаленного осадка $BaSO_4$ (гравиметрическая форма осадка):

$$m_3(BaSO_4) = m_2$$
 (тигель + $BaSO_4$) $-m_1$ (пустой тигель) =.....(г).

2. Определяем молярную массу BaSO₄:

$$M (BaSO_4) = \Gamma / Moль$$

3. Определяем массу Ba^{2+} , содержащегося в гравиметрической форме осадка $BaSO_4$, т.е. в m_3 ($BaSO_4$):

из молярной массы BaSO₄ имеем:

x =

Столько же ${\rm Ba}^{2+}$ содержится в исследуемом растворе.

Ответ задачи: $m(Ba^{2+})$ =.....(г)

Вопросы, изучаемые при подготовке к занятию:

- 1. В чем заключается сущность гравиметрического анализа?
- 2. Перечислите условия осаждения кристаллических и аморфных веществ?
 - 3. Что такое форма «осаждаемая форма» и «гравиметрическая форма»?
- 4. В чем сущность метода декантации? С какой целью используют промывание этим методом?
 - 5. Что значит: прокаливать тигель до постоянной массы?
 - 6. Какие требования предъявляются гравиметрической форме?

	е беззольный фильтр? Опишите процессы фильтрования
ромывания осад	ка.

<u>ЛАБОРАТОРНАЯ РАБОТА № 8</u> ОПРЕДЕЛЕНИЕ КАРБОНАТНОЙ ЖЕСТКОСТИ ВОДЫ МЕТОДОМ КИСЛОТНО-ОСНОВНОГО ТИТРОВАНИЯ

Цель: Приготовить и стандартизировать раствор хлороводородной кислоты; определить нормальную концентрации ($C_{\rm H}$) и титра (T) приготовленного раствора HCl по раствору тетрабората натрия, определить карбонатную жидкость воды.

Задачи:

- 1. Ознакомление с методом кислотно-основного титрования.
- 2. Освоение методики приготовления и стандартизации растворов кислот и основных приемов расчетов, используемых в процессе приготовления растворов кислот заданной концентрации.
 - 3. Приобретение навыков расчетов результатов прямого титрования.
- 4. Выработка навыков приемов пересчета, используемых при разных способах выражения концентрации.

При выполнении данных анализов титриметрическим методом в качестве титрованного раствора используется стандартизированный раствор хлороводородной (соляной) кислоты.

Поэтому работа складывается из выполнения нескольких заданий: приготовление приблизительно 0,1H. раствора хлороводородной кислоты, стандартизация этого раствора, определение щелочи в растворе, определение карбонатной жесткости воды.

Задание 1. Приготовление 250 мл приблизительно 0,1н. раствора HC1 из раствора HC1 с плотностью 1,1 г/см³ (г/мл).

<u>Пояснение.</u> Чтобы приготовить заданный раствор, необходимо решить задачу по определению объема раствора HCl с плотностью $1,1\,\mathrm{г/cm}^3$, требуемого для приготовления $250\,\mathrm{mn}~0,1\mathrm{h}$. раствора HCl.

Решение.

- 1) Определяем массу (г) хлороводорода, содержащегося в 250 мл 0,1н. раствора HCl:
- а) Определяем молярную массу HCl:

$$M(HCl) = \Gamma/MOЛЬ$$

б) Определяем молярную массу эквивалента HCl:

$$M_{\mathfrak{Z}}(HCl) = \frac{M(HCl)}{ochobhocmb \, \kappa - mbl} =$$
 $_{\Gamma/\text{МОЛЬ}}$

в) Определяем массу HCl в растворе:

$$C_{_{\it H}}(HCl) = \frac{m(HCl)}{M_{_{\it 9}}(HCl) \cdot V_{p-pa}}$$

$$m (HC1) = C_H \cdot M_3(HC1) \cdot V_{p-pa} = \Gamma.$$

2) Определяем массу раствора HCl с плотностью 1,1 г/см³, в котором содержится 0,91 г хлороводорода. По химическому справочнику определяем, какая массовая доля в % HCl (процентная концентрация) соответствует плотности раствора 1,1 г/см³. Это 20% раствор, т.е. ω % (p-pa) = 20%

Из формулы ω% определяем массу раствора: /

$$\omega\%(HCl) = \frac{m(HCl)\cdot 100\%}{m(p-pa)}$$

$$m(p-pa) = \frac{m(HCl)\cdot 100\%}{\omega(HCl)} =$$
 Γ .

3) Определяем объем (мл) 4,55 г раствора HC1 с плотностью 1,1 г/см 3 (20% p-p):

$$\rho = \frac{m}{V}$$

 ρ - плотность раствора, $\Gamma/\text{см}^3$;

m - масса раствора, г

V— объем раствора (см 3), можно в мл.

Нельзя отождествлять 1 мл и 1 cm^3 , т.к. 1 мл равен 1,000028 см³. На практике этой разницей обычно пренебрегают и считают, что 1 мл равен 1 см^3 .

$$V = \frac{m}{\rho} =$$
 мл.

<u>Приготовление раствора HCl:</u> взять мерную колбу объемом 250 мл, цилиндром отмерить в колбу рассчитанный объем раствора HC1 с плотностью 1,1 г/см³ и до метки содержимое колбы довести дистиллированной водой, колбу закрыть пробкой и раствор тщательно перемешать.

<u>Задание 2.</u> Определение нормальной концентрации (C_H) и титра (T) приготовленного раствора HCl по 0,1 H. раствору тетрабората натрия $Na_2B_4O_7$ (стандартизация раствора).

Химизм процесса титрования:

 $Na_2B_4O_7 + 7 H_2O \leftrightarrow 2 NaOH + 4 H_3BO_3$ - гидролиз соли Щелочь NaOH титруется кислотой HC1:

$$2NaOH + 2 HCI \rightarrow 2 NaCl + 2H_2O$$

В ходе титрования равновесие гидролиза $Na_2B_4O_7$ смещается вправо и все до полного гидролиза соли.

Из суммарного уравнения:

$$Na_2B_4O_7 + 5H_2O + 2 HCI \rightarrow 2 NaCl + 4 H_3BO_3$$

видно, что в результате реакции накапливается слабая ортоборная кислота. Следовательно, рН раствора в точке эквивалентности будет несколько меньше семи и для титрования следует взять индикатор метиловый оранжевый.

Ход анализа:

- 1. Готовим бюретки к работе: слить из бюреток воду, ополоснуть каждую бюретку соответствующим этикетке раствором (одну бюретку 0,1H. раствором $Na_2B_4O_7$, другую приготовленным раствором HC1), с помощью воронки **каждую бюретку наполнить соответствующим раствором выше нулевого деления**, заполнить раствором оттянутую трубку (пипетку), вытеснив из нее пузырьки воздуха, после этого убрать воронку и выпустить лишний раствор, установив нижний мениск его на нулевом делении.
- 2. В коническую колбу из бюретки наливаем 10 мл 0,1Н. раствора Na₂B₄O7 и добавляем 1 каплю метилового оранжевого. Цвет индикатора будет желтый, т.к. среда щелочная.
- 3. В другой конической колбе готовим раствор «свидетеля». Для этого надо отмерить в колбу из бюретки **20 мл дистиллированной воды, прибавить 1 каплю метилового оранжевого и 1 2 капли приготовленного раствора HCl**. Раствор приобретает розовое окрашивание. До такой окраски будем титровать раствор Na₂B₄O₇.
- 4.Коническую колбу с раствором $Na_2B_4O_7$ помещаем под бюретку с приготовленным раствором HCl и начинаем титрование. Титрование заканчиваем при переходе желтой окраски в бледно-розовую. По шкале бюретки определяем объем раствора HCl, который пошел на титрование, и записываем результаты анализа.

Титрование повторяем два раза. Для расчета берем среднее значение. Каждое новое титрование необходимо начинать с нулевого деления уровня раствора в бюретке.

Результаты анализа:

V - объем раствора HC1, пошедший на титрование, мл

$$V_{HCL}$$
 = ______мл (1)

$$V(HCl)_{cpednee}=rac{V_1+V_2}{2}=$$
_____мл

1.Определяем нормальную концентрацию приготовленного раствора HCl:

$$C_{H}(HCl) \cdot V(HCl) = C_{H}(Na_{2}B_{4}O_{7}) \cdot V(Na_{2}B_{4}O_{7}),$$

где С (Na **P** (

 $C_{\text{H}}(Na_{2}B_{4}O_{7})=0.1$ моль/л;

 $V(Na_2B_4O_7) = 10$ мл;

V(HCl) - среднее значение

$$C_{_{\it H}}(HCl) = \frac{C_{_{\it H}}(Na_2B_4O_7)\cdot V(Na_2B_4O_7)}{V(HCl)} = \dots$$
 — моль/ л

3. Определяем титр раствора HCl:

 $M_{\Im}(HC1) = 36,5$ г/моль

$$T_{HCl} = \frac{C_{_H} \left(HCl\right) \cdot M_{_{9}}(HCl)}{1000} = \dots 2 /$$
моль

<u>Задание 3</u>. Определение карбонатной жесткости водопроводной воды.

Жесткость обусловлена присутствием в воде растворимых солей кальция и магния.

Карбонатная жесткость зависит от содержания в воде гидрокарбонатов кальция и магния, количественно ее выражают числом милли моль эквивалентов (ммоль-экв) данных солей, содержащихся в 1 литре воды.

Исходя из определения нормальной концентрации раствора, карбонатная жесткость (Ж) - это нормальная концентрация гидрокарбонатов кальция

и магния в воде, умноженная на 1000. Ее можно определить титрованием воды раствором HCl.

Химизм процесса выражается уравнениями:

$$Ca(HCO_3)_2 + 2HC1 \rightarrow CaC1_2 + 2CO_2 + 2H_2O$$

 $Mg(HCO_3)_2 + 2HC1 \rightarrow MgCl_2 + 2CO_2 + 2H_2O$

Ход анализа:

- 1. Уровень раствора HCl в бюретке доводим до нулевого деления.
- 2. В коническую колбу цилиндром отмеряем 100 мл водопроводной воды и прибавляем 2-3 капли метилового оранжевого.
- 3. **Титруем воду раствором HCl** из бюретки до перехода желтой окраски индикатора в бледно-розовую. Титрование повторить 2 3 раза. Объемы растворов HCl, пошедших на титрование записать в результаты анализа и для расчетов взять среднее значение.

$$V_{HCL} =$$
______мл (1)
 $V_{HCL} =$ _____мл (2)

$$V(HCl)_{cpedhee}=rac{V_1+V_2}{2}=$$
_____мл

Расчет:

$$C_{\text{H солей}} \cdot V_{\text{солей}} = C_{\text{H HCl}} \cdot V_{\text{HCl}}$$
 $V_{\text{солей}} = V_{\text{H-O}} = 100 \text{ мл}$

 $C_{H \text{ HCl}}$ – берем из задания №2

$$C_{_{H \, CODe \check{u}}} = \frac{C_{_{H}}(HCl) \cdot V_{_{HCl}}}{V_{_{H_2O}}}$$

$$\mathcal{K} = \frac{C_{_H}(HCL) \cdot V_{_{HCl}}}{V_{_{H_2O}}} \cdot 1000 = \dots \dots MMOЛЬ - ЭКВ / Л$$

Ответ: карбонатная жесткость водопроводной воды равна _____ мэкв/л.

Вопросы, изучаемые при подготовке к занятию:

1. В чем суть титриметрического анализа? 2. Что называют точкой эквивалентности и конечной точкой титрования? 3. Какими способами выполняется титрование? 4. Какие индикаторы используются при кислотно-основном титровании? 5. Сущность метода перманганатометрии. Зачтено _____ Подпись преподавателя_____

<u>ЛАБОРАТРНАЯ РАБОТА № 9</u> ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ХЛОРИД-ИОНОВ МЕТОДОМ АРГЕНТОМЕТРИЧЕСКОГО ТИТРОВАНИЯ

Цель: определить содержания хлорид-ионов методом аргентометрического титрования.

Задачи:

- 1. Ознакомление с методом аргентометрического титрования.
- 2. Приобретение навыков расчетов результатов прямого титрования.
- 3.Выработка навыков приемов пересчета, используемых при разных способах выражения концентрации.

Титриметрические определения хлоридов основаны на реакциях образования осадков малорастворимых соединений. He все реакции сопровождающиеся выпадением осадков применимы в объемном анализе. В этих реакциях пригодны только некоторые реакции, удовлетворяющие определенным условиям. Реакция должна протекать строго по уравнению и без побочных процессов. Образующийся осадок должен быть практически нерастворимым И выпадать достаточно быстро, без образования пересыщенных растворов. К тому же необходимо иметь возможность определять конечную точку титрования с помощью индикатора.

Аргентометрия - объемный аналитический метод, основанный на реакциях осаждения ионов галогенов катионами серебра с образованием малорастворимых галогенидов:

$$Cl^- + Ag^+ = AgCl \downarrow$$

Наиболее распространено аргентометрическое определение хлора по *методу Мора*. Сущность его состоит в прямом титровании жидкости раствором нитрата серебра с индикатором хроматом калия до побурения осадка.

Индикатор метода Мора - раствор K_2CrO_4 дает с нитратом серебра красный осадок хромата серебра Ag_2CrO_4 , но растворимость осадка $(6,210^{-3} \text{моль/л})$ гораздо больше растворимости хлорида серебра $(1,3310^{-5} \text{моль/л})$. Поэтому при титровании раствором нитрата серебра в присутствии хромата калия красный осадок хромата серебра появляется лишь после добавления избытка ионов Ag^+ , когда все хлорид-ионы уже осаждены. При этом всегда к анализируемой жидкости приливают раствор нитрата серебра, а не наоборот.

Ход анализа.

Примерное содержание хлор-иона в воде определяют по осадку или мути в соответствии с требованиями таблицы:

Характеристика осадка или мути	Содержание СГ, г/л
Опалесценция или слабая муть	0,001÷0,01
Сильная муть	0,01÷0,05
Образуются хлопья, осаждаются не сразу	0,05÷0,1
Белый объемный осадок	Более 0,1

Задание. Количественное определение СГ.

Для анализа используют 4 образца воды.

Отбирают 100,0 мл испытуемой воды в коническую колбу и прибавляют 1 мл раствора хромата калия. Пробу титруют раствором нитрата серебра до появления оранжевого оттенка.

<u>Обработка результатов.</u> Массовую концентрацию хлор-иона (C_{Cl}) , г/л, вычисляют по формуле:

$$C_{\mathit{CL}} = \frac{T_{\mathit{AgNO3/CL}} \cdot K \cdot V(\mathit{AgNO}_{\!\!3}) \cdot 1000}{V_{\mathit{ILP}}}$$

где $T_{\text{AgNO3/Cl}}$ - титр AgNO₃ по Cl (количество хлор-иона, соответствующее 1 мл раствора нитрата серебра), г/мл;

К - поправочный коэффициент к титру раствора нитрата серебра;

 $V\left(AgNO_{3}\right)$ - количество нитрата серебра, израсходованное на титрование, мл;

 $V_{\Pi P}$ - объем пробы, взятый для определения, мл.

$$\underline{\textit{Исходные данные:}}$$
 $T_{\text{AgNO3/CI}} = 0,0005 \text{ г/мл}; \ \textit{K} = 0,9345;$ $V_{\text{ПР}} = 100,0 \text{ мл}; \ \textit{V}(\textit{AgNO}_3) = 2,79 \text{ мл}$ Расход AgNO₃ на титрование

№ пробы	1	2	3	4
$V_{I}(AgNO_{3})$, мл				
$V_2(AgNO_3)$, мл				
$Vcp(AgNO_3)$, мл				
C _{CI}				

Pacuem:
Заключение.
*По нормативам содержание хлоридов (Cl ⁻) в питьевой воде не должено превышать 0,35 г/л. Проведя анализы и обработав результаты, установили, что содержание хлор-иона в пробах г/л, что соответствует/ не соответствует нормам ГОСТа.
Вопросы, изучаемые при подготовке к занятию: 1. Сущность аргентометрического титрования. 2. Какие растворы называют стандартными. 3. Виды жесткости воды.

	_
	-
,	
	_
	Полима продолжения
Зачтено	_ Подпись преподавателя

ЛАБОРАТОРНАЯ РАБОТА № 10

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ИОНА КАЛЬЦИЯ МЕТОДОМ КОМ-ПЛЕКСОНОМЕТРИЧЕСКОГО ТИТРОВАНИЯ

Цель: Определить содержание иона кальция методом комплексонометрического титрования.

Задачи:

- 1. Освоение приемов комплнесонометрического титрования.
- 2. Определить содержание кальция в водопроводной воде.

Ход анализа.

Для анализа используют 4 образца воды.

Отбирают 100,0 мл испытуемой воды в коническую колбу и прибавляют 2 мл гидроксида натрия, выжидают 5 минут. В качестве индикатора вводят хром темно-синий и пробу медленно титруют раствором трилона Б 0,1 моль/дм до изменения цвета раствора из вишнево-красного в фиолетовый – синий.

Обработка результата:

массовую концентрацию ионов кальция мг/л, вычисляют по формуле:

$$X = \frac{V_1 M \cdot 40.08 \cdot 1000}{V_2}$$

где V_1 – объём раствора комплексона, пошедший на титрование, мл

M — молярная концентрация комплексона III = 0.05 моль/л

40, 08 молярная масса иона кальция, г/моль

 $V_2 - {\sf o}$ бъём пробы, взятый на анализ, мл

Расход трилона Б на титрование

№ пробы	1	2	3	4
$V_{I}(mp.E)$, мл				
V_2 (тр. Б), мл				
<i>Vcp(mp. Б)</i> , мл				
С Сальция				

Расчет:
Заключение.
По нормативам содержание кальция в питьевой воде 30-120 г/л. Проведя анализы и обработав результаты, установили, что содержание кальция-иона в пробах г/л, что соответствует/ не соответствует нормам ГОСТа. Вопросы, изучаемые при подготовке к занятию:
1. В чем заключается сущность метода комплексонометрического титрования?
2. Что такое комплексоны? Какова характерная особенность этих соединений?
3. Назовите основные характеристики комплексных соединений.

Зачтено	Подпись преподавателя _	

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К КОНТРОЛЬНЫМ ТОЧКАМ ПО ДИСЦИПЛИНЕ «АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ»

II. Раздел «Количественный анализ»

- 1. Задача количественного анализа, классификация методов (дать определения). Средняя проба для анализа, навеска вещества для анализа.
- 2. Химическая посуда. Химические методы анализа, их классификация, дать определения.
- 3. Классификация химических методов анализа: гравиметрические и титриметрические.
- 4. Сущность гравиметрического метода анализа. Достоинства и недостатки.
- 5. Условия, которые необходимо соблюдать при осаждении осадков.
- 6. Требования к осаждаемой и весовой форме осадка.
- 7. Зависимость точности гравиметрического анализа от величины навески анализируемого вещества.
- 8. Стадии, которыми характеризуется процесс образования осадков.
- 9. Условия получения крупнокристаллических осадков.
- 10. Условия получения аморфных осадков.
- 11. Влияние порядка приливания раствора осадителя и скорости осаждения осадка.
- 12. Соосаждение и виды соосаждения.
- 13. Способы снижения эффекта соосаждения.
- 14. Правила фильтрования и промывания осадков.
- 15. Сущность титриметрического анализа. Достоинства и недостатки метода.
- 16. Типы химических реакций, используемых в титриметрическом анализе.
- 17. Требования к реакциям в титриметрическом анализе.
- 18. Определения: эквивалент, фактор эквивалентности, молярная масса эквивалента. Форма записи.
- 19. Определения: количество вещества, понятие «моль», молярная масса вещества.
- 20. Расчет количества эквивалентов в реакциях нейтрализации, окисления восстановления, осаждения и комплексообразования.
- 21. Способы выражения концентраций, используемых в количественном анализе.
- 22. Молярная концентрации вещества, пересчет на молярную концентрацию эквивалента и массовую концентрацию.
- 23. Молярная концентрация эквивалента вещества (нормальная), пересчет на молярную и массовую концентрации вещества.
- 24. Массовые концентрации: титр рабочего раствора, условный титр рабочего раствора, титр по определяемому веществу, %, г/дм³, ppm.
- 25. Формулы расчета количества эквивалентов, исходя из различных способов выражения концентраций и массы вещества.
- 26. Способы приготовления стандартных растворов.

- 27. Установка концентрации растворов. Использование установочных веществ. Требования, предъявляемые к установочным веществам.
- 28. Установочные вещества в реакциях нейтрализации, окисления восстановления, комплексообразования, осаждения. Написание реакций взаимодействия установочных веществ с определяемым веществом.
- 29. Приемы титрования в титриметрическом методе анализа.
- 30. Формулировка и запись закона эквивалентности.
- 31. Условия применения и осуществления прямого метода титрования. Формула для расчета количества вещества.
- 32. Условия применения и осуществления метода обратного титрования (титрование по остатку). Формула для расчета количества вещества.
- 33. Метод отдельных навесок и метод пипетирования, аликвотная доля, фактор аликвотности.
- 34. Физико химические методы анализа, их классификация (дать определения)
- 35. Потенциометрические методы анализа; используемые приборы. Сущность потенциометрического титрования, определение конца, расчетная формула для определения нормальной концентрации и титра исследуемого раствора.
- 36. Фотоэлектроколориметрия, сущность метода, стандартные растворы. Последовательность операции в ходе анализа (на примере определения Cu). Используемые приборы.
- 37. Кондуктометрия. Сущность кондуктометрического титрования.
- 38. Определение объёма раствора, пошедшего на титрование в методах потенциометрического и кондуктометрического титрования.
- 39. Колоночная адсорбционная хроматография. Качественная и количественная идентификация разделяемых веществ.
- 40. Тонкослойная хроматография. Сущность метода, аппаратурное оформление. Установление химической природы и количества компонентов.
- 41. Распределительная хроматография. Сущность метода, аппаратурное оформление. Бумажная хроматография.
- 42. Классификация, назначение и основы метода газовой хроматографии. Принципиальная схема газового хроматографа и техника выполнения.
- 43. Представить закон Бугера-Ламберта-Бера в линейном и степенном виде. Аддитивность оптической плотности. Связь оптической плотности с пропусканием. Молярный коэффициент поглощения. Ограничения и условия применимости закона.
- 44. Описать метод атомно абсорбционной спектроскопии. Перечислить способы атомизации вещества. Электротермическая атомизация. Пламенно-эмиссионная спектроскопия. Различие между атомно абсорбционной и пламенно-эмиссионной. Преимущества и недостатки методов.

РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ ТЕМ РЕФЕРАТОВ ПО ДИСЦИП-ЛИНЕ

«АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ»

- 1. Адсорбционные индикаторы.
- 2. Анализ веществ растительного и животного происхождения.
- 3. Анализ полимерных материалов.
- 4. Аналитическая служба как система.
- 5. Индикаторные реакции и индикаторные вещества в кинетических методах анализа.
- 6. Использование неводных растворителей в химическом анализе.
- 7. Капельный анализ: современные варианты.
- 8. Мембранные методы разделения.
- 9. Методы разложения проб минеральной и органической природы.
- 10. Модифицированные и иммобилизованные аналитические реагенты.
- 11. Оптимизация методов первичной обработки и хранения проб.
- 12. Планирование и оптимизация эксперимента.
- 13. Проблемы анализа веществ высокой чистоты.
- 14. Проблемы оптимизации чувствительности и селективности в титриметрическом анализе.
- 15. Разделение и концентрирование на основе процессов химического осаждения и соосаждения.
- 16. Разделение методами отгонки и дистилляции.
- 17. Современные методы исследования комплексообразования в гомогенных и гетерофазных системах.
- 18. Сорбционные методы концентрирования веществ.
- 19. Статистика в аналитической химии.
- 20. Термогравиметрия как метод химического анализа и метод исследования веществ.
- 21. Ферментативные и иммунохимические методы анализа.
- 22. Флуоресцентные и хемилюминесцентные индикаторы.
- 23. Функции кислотности веществ. Твердые кислоты и основания.
- 24. Хелатные комплексы в химическом анализе.
- 25. Химические методы в анализе лекарственных препаратов.
- 26. Экстракционные методы разделения и концентрирования.
- 27. Электрогравиметрические методы анализа.
- 28. Электромиграционные методы разделения.
- 29. Электрохимические методы разделения и концентрирования.
- 30. Эффекты ионной силы и побочных реакций в химическом равновесии.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РЕФЕРАТА

Реферат включает: подготовку реферата (обязательно), доклада и презентации (по желанию) по теме реферата.

Реферат **печатается на компьютере и распечатывается на принтере** на одной стороне белой бумаги формата А4. <u>Общий объем реферата должен составлять **не менее 30 страниц**.</u>

При оформлении текста реферата следует учитывать, что открывается работа **титульным листом**. Титульный лист реферата кроме названия реферата должен содержать сведения об учреждении образования, факультете, кафедре и дисциплине, по которой выполнен реферат. На титульном листе указывают фамилию, курс, группу исполнителя, фамилию преподавателя дисциплины, а также место и год выполнения работы (**приложение**).

Главный критерий качества работы — полнота и комплексность освещения темы. Каждый раздел работы должен начинаться с соответствующего заголовка по оглавлению с нумерацией каждой станицы. **Реферат, не соответствующий указанным требованиям, возвращается на доработку.** Оформленный реферат должен быть сброшюрован.

Преподаватель принимает у студента реферат в строго определенный срок (устанавливается индивидуально для каждого направления подготовки). За правильно оформленный реферат преподаватель выставляет студенту <u>10</u> <u>баллов</u> к рейтингу в БРС.

РЕКОМЕНДУЕМЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ ИТОГОВОГО КОНТРОЛЯ (зачет)

- 1. Предмет, задачи, значение аналитической химии. Классификация методов анализа.
- 2. Отбор и подготовка пробы к анализу
- 3. Метрологические характеристики методик анализа.
- 4. Скорость реакций в химическом анализе. Быстрые и медленные реакции. Скорость определяющая стадия. Факторы, влияющие на скорость. Управление реакциями и процессами в аналитической химии.
- 5. Реакции кислотно-основного взаимодействия. Протолитичекая теория кислот и оснований Бренстеда-Лоури. Электронная теория Льюиса. Теория Усановича и др. Кислотно-основные свойства растворителя.
- 6. Константы кислотности и основности, ионное произведение растворимости. Равновесие в водных растворах кислот и оснований, расчет рН растворов. Величина рН как условие проведения аналитических реакций. 7. Буферные растворы, их использование в аналитической химии.
- 8. Кислотно-основные индикаторы. Теория индикаторов. Интервал перехода окраски индикатора.
- 9. Гидролиз солей, его роль в анализе. Факторы, влияющие на глубину протекания гидролитических реакций.
- 10. Свойства комплексных соединений, используемых в аналитической химии. Использование комплексообразования для определения, маскирования ионов, для растворения осадков, для измерения потенциала. Особенности комплексообразования органических веществ.
- 11. Основные направления использования органических реагентов в химическом анализе, наиболее распространенные химические реагенты. Комплексоны. Общие свойства комплексанатов. Использование комплексона III.
- 12. Основные неорганические и органические окислители и восстановители, используемые в анализе. Окислительно-восстановительные потенциалы и направление OBP. Количественная характеристика полноты протекания OBP.
- 13. Скорость и механизм протекания реакций окисления-восстановления. Редокс индикаторы. Использование реакций окисления-восстановления.
- 14. Осадки и их свойства. Кристаллические и аморфные осадки. Свойства осадков и причины их загрязнения: соосаждение, адсорбция, окклюзия. Фракционное осаждение. Условия получения чистых осадков.
- 15. Произведение растворимости, произведение активностей и растворимость электролита. Правила произведения растворимости. Условия выпадений осадков.
- 16. Полнота осаждения и факторы, влияющие на полноту осаждения: влияние одноименных ионов.
- 17. Задача качественного анализа. Аналитические реакции, привести примеры. Сущность качественного анализа.

- 18. Аналитическое реакции, проводимые «сухим» и «мокрым» путем, привести примеры.
- 19. Специфические аналитические реакции, привести примеры.
- 20. Селективные аналитические реакции, пример.
- 21. Условия проведения аналитической реакции на примере катиона натрия.
- 22. Систематический ход анализа. Составить последовательность действий в ходе анализа смеси катионов I группы и обосновать ее.
- 23. Аналитические реакции обнаружения ионов и аналитические реакции отделения ионов, привести примеры.
- 24. Дробный ход анализа. Привести примеры реакций на катионы железа (II), железа (III), марганца (II).
- 25. Групповой реагент, на чем основано его действие? Привести примеры отделения III группы от II-ой.
- 26. Классификация катионов на четыре аналитической группы, указать групповые реагенты.
- 27 Общая характеристика катионов III-ей группы, их биологическая роль.
- 28.Общая характеристика катионов IV-ой группы, их биологическая роль. Классификация анионов на три аналитические группы, указать групповые реагенты.
- 29. Основные понятия и методы количественного анализа.
- 30. Гравиметрический метод анализа Классификация химических методов анализа. Сущность гравиметрического анализа. Область применения.
- 31.Операции гравиметрического анализа: отбор средней пробы, перекристаллизация, взятие навески вещества, растворение анализируемого вещества, осаждение, фильтрование, соосаждение, промывание осадка, высушивание и прокаливание осадка.
- 32 Титриметрический анализ: классификация методов, сущность методов, измерительная посуда. Способы выражения состава растворов и вычисление в различных методах титриметрического анализа.
- 33. Основные понятия: титрование, точка эквивалентности, конец титрования, стандартные и стандартизированные растворы. Первичные стандарты и требования, предъявляемые к ним. Фиксаналы. Точность титриметрического анализа. Источники погрешностей.
- 34. Кислотно-основное титрование. Сущность метода.
- 35. Физико-химические методы анализа. Классификация методов.
- 36. Сущность фотометрического анализа. Фотоколориметрические методы. Сущность колориметрического анализа. Закон Бугера-Ламберта-Бера. Оптическая плотность раствора.
- 37. Устройство ФЭК-56 М. Применение фотометрического анализа.
- 38. Потенциометрический метод анализа. Сущность метода. Область его применения.
- 39. Гальванический элемент. Индикаторный электрод. Электрод сравнения. ЭДС гальванического элемента.

- 40. Методы потенциометрического анализа. Потенциометрические методы определения концентрации водородных ионов. РН-метр.
- 41. Потенциометрическое титрование. Кривые потенциометрического титрования с использованием реакций нейтрализации. Способы нахождения конечной точки титрования.
- 42. Кондуктометрический метод анализа. Сущность метода, область его применения, преимущества. Электропроводность растворов электролитов.

Кондуктометрическое титрование. Кривая кондуктометрического титрования. Определение конечной точки титрования.

- 43. Сущность хроматографического анализа.
- 44. Классификация методов хроматографического анализа. Методы получения хроматограмм. Типы стационарных и подвижных фаз.
- 45. Ионообменная хроматография.
- 46. Газовая хроматография
- 47. Распределительная хроматография.
- 48. Применение хроматографии для определения и разделения неорганических и органических веществ.
- 49. Спектроскопические методы анализа. Общая характеристика метода. Классификация.
- 50. Основные методы ренгеноспектральноэмиссионого анализа. Пределы обнаружения в методах рентгеноспектрального анализа.
- 51. Качественный и количественный ренгеноспектральный анализ.
- 52. Методы оптической спектрометрии: атомно-эмиссионный, атомно-абсорбционный, атомно-флуоресцентный.
- 53. Биологические методы анализа Аналитические индикаторы в биологических методах анализа.
- 54. Микроорганизмы как аналитические индикаторы.
- 55. Анализ органических и биологических объектов.

ПРИЛОЖЕНИЕ

1. Периодическая система химических элементов Д.И. Менделеева

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА ПЕРИОДЫ VIII В (H) Be 9.0122 10.811 12.011 14.007 15.999 2 Carboneum Oxygenium Mg 24.305 3 Ge Ga 69.72 5 Sb 56 Hydrargyrum Thallium Таллий 88 89 87 7 ФОРМУЛЫ ВЫСШИХ ФОРМУЛЫ R₂O R_2O_3 RO₂ R2O5 RO₃ R2O7 RO₄ RO ФОРМУЛЫ ЛЕТУЧИХ ОДНОРОДНЫХ СОЕДИНЕНИЙ RH₂ RH₄ RH_3 RH 58 Ce 19 Pr 100 Nd 161 Pm 153 Sm 151 S Eu 151 S Gd 155 Sm 151 S Eu 151 S Gd 155 Sm 151 S Eu 151 S Gd 155 S Ce 150 S Er 151 S S ER 15 АКТИНОИДЫ**

2. Таблица растворимости кислот, оснований и солей в воде

		Pac	TB	opr	IMC	CTI	b KI	ncn	OT.	OCI	HOB	ан	nň	и с	one	eň c	3 B	040	3		al all sources	
Катионы Анионы	H^{+}		K ⁺																	Pb ²⁺	Sn ²⁺ C	'u ²⁺
ОН-		P	P	P	P	P	M	H	H	H	H	H	H	H	H	H	-	-	_	H	HI	H
Cl ⁻	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	H	H	P	M	P	P
Br-	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Ĥ	Ĥ	M	M	Pi	P
I-	P	P	P	P	P	P	P	P	P	P	P	-	P	P	P	P	Ĥ	Ĥ	H	Ħ	M	-
S ²⁻	P	P	P	P	P	P	P	P	-	-	H	=	H	H	H	H	Ĥ	Ĥ	Ĥ	Ĥ	HI	H
SO ₃ ²⁻	P	P	P	P	P	H	H	H	-		H	-	H	H	H	H	H	_	-	Ĥ		-
SO ₄ ²⁻	P	P	P	P	P	H	M	P	P	P	P	P	P	P	P	P	M	M	P	Ĥ	P	P
PO ₄ 3-	P	H	P	P	P	H	H	H	H	H	H	H	H	H	H	Ĥ	H	H	H	Ĥ	Hi	H
CO ₃ ²⁻	P	P	P	P	P	H	H	H	180	-	H	-	H	H	H	Ĥ	H	H	_	Ĥ		-
SiO ₃ ²⁻	H	P	P	P	-	H	H	H	H		H	H	-	-	H	H	-	-	-	H	- 1	H
NO ₃	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	- 10	P
CH ₃ COO	P	P	P	P	P	P	P	P	M	P	P	P	P	P	P	P	P	M	P	P		P
Эпектрохимический ряд напряжений металов																						
LiRbKBaSrCaNaMgAlMnZnCrFe																						
CdCoNiSnPbHSbBiCuHgAgPdPtAu																						

3. Сульфидная классификация катионов и анионов

	э. Сульфидная класси	P	102 11 011101102
Анали- тическая группа	Катионы, составляющие группу	Групповой реагент	Характеристика группы
I	группу NH ₄ ⁺ ,Na ⁺ , K ⁺ , Mg ²⁺ и др.	Группового реагента нет	Карбонаты, сульфиды растворимы в воде
II	Ca ²⁺ , Ba ²⁺ и др. ²⁺	(NH ₄) ₂ CO ₃	Карбонаты не растворимы в воде, сульфиды растворимы в воде
III	Al ³⁺ , Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Zn ²⁺ и др.	(NH ₄) ₂ S	Сульфиды не растворимы в воде, но растворимы в разбавленных кислотах. Карбонаты не растворимы в воде
IV	Ag^+ , Pb^{2+} , Hg_2^{2+} , Cu^{2+} , Hg^{2+} и др. По растворимости хлоридов IV группа делится на две подгруппы Ag^+ , Pb^{2+} , Hg_2^{2+} - подгруппа серебра Cu^{2+} , Hg^{2+} - подгруппа меди.	1 •	Сульфиды не растворимы в воде и не растворимы в разбавленных кислотах. 1-я подгруппа - хлориды не растворимы в воде; 2-я подгруппа - хлориды растворимы в воде.

Ход анализа смеси катионов всех четырех групп начинают с отделения четвертой группы с последующим ее анализом, затем отделение третьей, второй групп и остается первая группа.

Анали-	Анионы,	Групповой	Характеристики
тическая	составляющие	реагент	группы
группа	группу		
I	SO ₄ ²⁻ , CO ₃ ²⁻ , PO ₄ ³⁻ и	BaCl ₂ в ней-	Соли бария не раство-
	др.	тральной или	римы в воде, но раство-
		слабощелоч-	ряются в разбавленных
		ной среде	кислотах, исключение
			составляет BaSO ₄ .
II	Cl ⁻ , Br ⁻ , I ⁻ и др.	AgNO ₃ в при-	Соли серебра не раство-
		сутствии	римы в воде и в HNO ₃ .
		HNO_3	
III	NO ₃ ⁻ и др.	Группового	Соли бария и серебра
		реагента нет	растворимы в воде.

4. Таблица изменения окраски индикаторов

Изменение окраски индикаторов в зависимости от среды									
Название индикатора	В нейтральной среде	В щелочной среде	В кислотной среде						
Лакмус	Фиолетовый	Синий	Красный						
МетилОранж	Оранжевый	Желтый	Красно-розовый						
Фенолфталеин	Бесцветный	Малиновый	Бесцветный						

5. Образец оформления титульного листа реферата

ФГБОУ ВО СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Кафедра химии и защиты растений

РЕФЕРАТ

Дисциплина: Аналитическая химия (или Аналитическая химия и физи	<i>lК0-</i>
химические методы исследования)	

Гема: «	W.	>>

Выполнил:

студент факультета агробиологии и земельных ресурсов, 2 курса, 7 группы, направление 19.03.02 ППРС Иванов В.В.

Проверила:

к.б.н., доцент Волосова Е.В.

Ставрополь, 2023

ВОЛОСОВА Елена Владимировна ШИПУЛЯ Анна Николаевна ПАШКОВА Елена Валентиновна БЕЗГИНА Юлия Александровна ГЛАЗУНОВА Наталья Николаевна